• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
Geometry Help
  • About
  • Privacy Policy
  • Contact Me
  • Terms of Service
  • Accessibility Statement
menu icon
go to homepage
search icon
Homepage link
  • About
  • Privacy Policy
  • Contact Me
  • Terms of Service
  • Accessibility Statement
×
Home » Lines and Angles » Parallel Lines » Intercept Theorem

Intercept Theorem

Last updated: Oct 29, 2021 by Ido Sarig · This website generates income via ads and uses cookies · Terms of use · Privacy policy

The Intercept theorem provides the ratios between the line segments created when two parallel lines are intercepted by two intersecting lines.

It is sometimes called "Thales' Theorem" (not to be confused with another one of his theorems related to inscribed angles, also called Thales' Theorem) after the Greek mathematician to whom the proof is attributed.

Problem

m and n are parallel lines. XC and XB are two intersecting lines that intercept m and n. Show that the following relationship between the lengths of the line segments is true:

XD/XC=XA/XB =DA/CB and XD/DC=XA/AB

intercept theorem

Strategy

When proving the Intercept Theorem, we will use our go-to method when required to show equal ratios of two pairs lines- similar triangles.

Here, the similar triangles are obvious: △XDA is similar to △XCB, as both triangles share the apex angle X, and the other two pairs of angles are congruent as corresponding angles of two parallel lines formed by transversal lines.

The first ratio relationship (XD/XC=XA/XB =DA/CB) is a direct consequence of the triangle similarity since all the line segments involved are corresponding sides in similar triangles.

The second relationship (XD/DC=XA/AB) also follows from the triangle similarity, with a bit of algebra. Set XA=x; AB=y; XD=z; DC=w.

intercepts with letters

Then, from the triangle similarity, x/(x+y)=z/(z+w). Cross multiply to get x(z+w) = z(x+y).
Thus xz+xw=zx+zy, or xw =zy. rearrange to get x/y=z/w, and substitute back the line segments to get XA/AB=XD/DC

Proof

(1) ∠DXA≅∠CXB //Common angle, reflexive property of equality
(2) n || m // Given
(3) ∠XDA≅∠XCB //(2), Corresponding angles from by a transversal of parallel lines
(4) ∠XAD≅∠XBC //(2), Corresponding angles from by a transversal of parallel lines
(5) △XDA ∼ △XCB //(1) , (3) , (4) Angle-Angle-Angle
(6) XD/XC=XA/XB =DA/CB //(5), corresponding sides of similar triangles

Set XA=x; AB=y; XD=z; DC=w

(7) x/(x+y)=z/(z+w) //(5), corresponding sides of similar triangles
(8) xz+xw=zx+zy //(7) , cross-multiply
(9) xw = zy //(8), subtract xz from both sides, subtraction property of equality
(10) x/y=z/w //(9), divide both side by wy , division property of equality
(11) XA/AB=XD/DC //(10), substitute back XA=x; AB=y; XD=z; DC=w

« Are All Equilateral Triangles Similar?
Thales' Theorem »

About the Author

Ido Sarig is a high-tech executive with a BSc degree in Computer Engineering. His goal is to help you develop a better way to approach and solve geometry problems. You can contact him at [email protected]

Primary Sidebar

About

Welcome to Geometry Help! I'm Ido Sarig, a high-tech executive with a BSc degree in Computer Engineering and an MBA degree in Management of Technology. I'm here to tell you that geometry doesn't have to be so hard! My goal with this website is to help you develop a better way to approach and solve geometry problems, even if spatial awareness is not your strongest quality. Read More…

Geometry Topics

  • Area of Geometric Shapes
  • Circles
    • Arcs, Angles, and Sectors
    • Chords
    • Inscribed Shapes
    • Tangent Lines
  • Lines and Angles
    • Intersecting Lines and Angles
    • Parallel Lines
    • Perpendicular lines
  • Pentagons and Hexagons
  • Perimeter of Geometric Shapes
  • Polygons
  • Quadrangles
    • Kites (Deltoids)
    • Parallelograms
    • Rectangles
    • Rhombus
    • Squares
    • Trapezoids
  • Triangles
    • Congruent Triangles
    • Equilateral Triangles
    • Isosceles Triangles
    • Pythagorean Theorem
    • Right Triangles
    • Similar Triangles
    • Triangle Inequalities

By accessing or using this website, you agree to abide by the Terms of Service and Privacy Policy.


Copyright © 2023