• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
Geometry Help
  • About
  • Privacy Policy
  • Contact Me
  • Terms of Service
  • Accessibility Statement
menu icon
go to homepage
search icon
Homepage link
  • About
  • Privacy Policy
  • Contact Me
  • Terms of Service
  • Accessibility Statement
×
Home » Perimeter of Geometric Shapes » Perimeter of a Polygon

Perimeter of a Polygon

Last updated: Oct 1, 2019 by Ido Sarig · This website generates income via ads and uses cookies · Terms of use · Privacy policy

The perimeter of a polygon is the combined length of all its straight-line sides. In many geometry problems, we are asked to find the perimeter of an irregular shape, where not all of the side lengths are given, In many cases, we can use the properties of simple polygons like triangles or rectangles to find the perimeter of such irregular polygons, as in this example.

Problem

Find the perimeter of the following shape, created by cutting a triangle from a square with side 5 units, as in the following drawing.

perimeter of a polygon

Strategy

The irregular shape was created by taking a square, where all four side are equal, and replacing one of the sides. Since the original shape was a square, the three sides that remain of the original shape are all equal and measure 5 units each.

The hint for finding out the two other sides is in the given angle - 30 °. In the original shape, which is a square, the interior angles all have a measure of 90°. so if we draw back the missing side of the square, the resulting triangle will have two angles measuring 60°. But if two of the triangle's angles are 60°, then by the sum of angles in a triangle, the third angle must also measure 60° (180° - 60°-60°=60°).

So this triangle is an equilateral triangle, and all its sides have equal length. The missing side which we drew back measures 5 units, since it was originally a side of a square with side length 5 units, and so all sides of the equilateral triangle must also measure 5 units .

perimeter of a polygon with equilateral

So the perimeter is 5+5+5+5+5=25 units.

« Midpoints of a Quadrilateral - a Difficult Geometry Problem
Tangents to a circle and inscribed angles »

About the Author

Ido Sarig is a high-tech executive with a BSc degree in Computer Engineering. His goal is to help you develop a better way to approach and solve geometry problems. You can contact him at [email protected]

Primary Sidebar

About

Welcome to Geometry Help! I'm Ido Sarig, a high-tech executive with a BSc degree in Computer Engineering and an MBA degree in Management of Technology. I'm here to tell you that geometry doesn't have to be so hard! My goal with this website is to help you develop a better way to approach and solve geometry problems, even if spatial awareness is not your strongest quality. Read More…

Geometry Topics

  • Area of Geometric Shapes
  • Circles
    • Arcs, Angles, and Sectors
    • Chords
    • Inscribed Shapes
    • Tangent Lines
  • Lines and Angles
    • Intersecting Lines and Angles
    • Parallel Lines
    • Perpendicular lines
  • Pentagons and Hexagons
  • Perimeter of Geometric Shapes
  • Polygons
  • Quadrangles
    • Kites (Deltoids)
    • Parallelograms
    • Rectangles
    • Rhombus
    • Squares
    • Trapezoids
  • Triangles
    • Congruent Triangles
    • Equilateral Triangles
    • Isosceles Triangles
    • Pythagorean Theorem
    • Right Triangles
    • Similar Triangles
    • Triangle Inequalities

By accessing or using this website, you agree to abide by the Terms of Service and Privacy Policy.


Copyright © 2023